VIPSKILLS

SOLAR RADIATION

VIPSKILLS

THE SUN

Source: https://pixabay.com/es/sun-bola-de-fuego-llamarada-solar-11582/

The sun is a big fusion reactor that transform hidrogen in helium with rate of $4 \mathrm{Mt} / \mathrm{s}$, in a temperature of $6000{ }^{\circ} \mathrm{C}$

Source: http://www.greenrhinoenergy.com/solar/radiation/characteristics.php

VIPSKILLS

THE SUN

The Solar Radiation that arrive to Earth surface is due to two factors:

- Astronomical factors: distance Sun-Earth, Earth position, angle of incidence, etc.
- Climatic factors: clouds, water vapor, ozone, etc.

VIPSKILLS

THE SUN

Average distance

 from Sun to Earth: $\mathrm{R}=149.610^{6} \mathrm{Km}$(AU: astronomical unit)
Inclination of the
Earth axis: 23.45 º

Distance from Sun to Earth : R[1+0.033cos(360d $\left.\left.{ }_{n} / 365\right)\right]$

$$
d_{n}=1,2, \ldots, 365 \text { (day of the year) }
$$

VIPSKILLS

THE SUN

Solar Irradiance: Power of solar radiation that crosses a surface per $1 \mathrm{~m}^{2}$.

$$
\mathrm{G}_{\mathrm{n}}=\mathrm{G}\left(1+0.033 \cos \left(360 \mathrm{~d}_{\mathrm{n}} / 365\right)\right)
$$

Units: W/m²

G= Solar constant, the solar irradiance that would be incident on a plane perpendicular to the rays, at a distance of one astronomical unit (AU)

$$
\mathrm{G}=1367 \mathrm{~W} / \mathrm{m}^{2}
$$

VIPSKILLS

THE SUN

Variation of Solar Irradiance along the year

VIPSKILLS

GEOGRAPHIC COORDINATES
Allows to determinate positions of points on Earth.

- Latitude, L: angle between the equatorial plane and the straight line that passes through that point and through the center of the Earth
- Longitude: angle east or west of a reference meridian to

VIPSKILLS

SUN POSITION

Perceived Sun movement

VIPSKILLS

SUN POSITION

Equatorial coordinates system

North Celestial Pole

Easy for calculation with day and hour: δ :declination
$\delta=23.45 \sin \left[\left(284+d_{n}\right) 360 / 365\right]$
Celestial
Equator
ω :Right ascension or hour angle

$$
\omega=(\text { hora solar-12h)/150 }
$$

VIPSKILLS

SUN POSITION

 Horizontal coordinates system

Intitutive for observer:
a: azimuth
h: altitude
z: Zenith (90@-h)

VIPSKILLS

SUN POSITION

Coordinates transformations:

$$
\begin{aligned}
& \sin (\mathrm{h})=\sin (\mathrm{L}) \sin (\delta)+\cos (\mathrm{L}) \cos (\delta) \cos (\omega) \\
& \sin (\mathrm{h}) \cos (\mathrm{a})=\sin (\mathrm{L}) \cos (\delta) \cos (\omega)-\cos (\mathrm{L}) \sin (\delta) \\
& \cos (\mathrm{h}) \sin (\mathrm{a})=\cos (\mathrm{L}) \sin (\omega)
\end{aligned}
$$

VIPSKILLS

SUN PATH DIAGRAMAN (cartesian)

 sunset:

In the sunset, the altitude is $\mathrm{h}=0$
$\omega_{\mathrm{p}}=\operatorname{arcos}(-\mathrm{tg} L \operatorname{tg} \delta)$

Source: http://www.thesolarplanner.com/array_placement3.html

VIPSKILLS

SUN PATH DIAGRAMAN (polar)

Source: http://www.l-e-s-
s.co.uk/Guides/Physics/SolarGeometry.htm

Virtual and Intensive Course Developing Practical Skills of Future Engineers

VIPSKILLS

MAXIMUM INSOLATION

Time between sunrise and sunset

$$
N_{\text {hours }}=\frac{2 \omega_{p}}{15 \underline{o}} \text { Hour angle in the sunset }
$$

$$
N_{\text {horas }}=\frac{2 \operatorname{arcos}(-\operatorname{tg} L \operatorname{tg} \delta)}{150}
$$

VIPSKILLS

HORIZONTAL EXTRATERRESTRIAL IRRADIANCE

 Irradiance through a surface parallel to Earth suface located out atmosphere

$$
G_{h}=G_{n}(\sin \delta \sin L+\cos \delta \cos L \cos \omega)
$$

HORIZONTAL EXTRATERRESTRIAL IRRADIATION

 Irradiation: Integral of the irradiance over a range of time.$$
\mathrm{H}=\int \mathrm{G}_{\mathrm{h}} \mathrm{dt}=12 / \pi \int \mathrm{G}_{h} \mathrm{~d} \omega
$$

Units: J/m²

HORIZONTAL EXTRATERRESTRIAL IRRADIATION

Daily Irradiation: Integrate over a whole day.

$$
H_{d}=\int_{0}^{24 h} G_{h} d t=12 / \pi \int_{-\omega_{p}}^{\omega_{p}} G_{h} d \omega
$$

For the extraterrestrial irradiation:

$$
H_{0}=24 / \pi G_{n}\left(\omega_{p} \sin \delta \sin L+\cos \delta \cos L \sin \omega_{p}\right)
$$

There are also irradiation by hour, month, etc.

VIPSKILLS

HORIZONTAL EXTRATERRESTRIAL IRRADIATION

Daily Irradiation: Integrate over a whole day.
It is possible to show that the monthly average of this daily irradiation coincides numerically with the daily irradiation corresponding to the representatives days.

	Jan	Feb	Mar	Abr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dic
$\mathbf{d}_{\mathbf{n}}$	17	45	74	105	135	161	199	230	261	292	322	347

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

atmospheric absorption spectrum

Source:
http://lasp.colorado.edu/~bagenal/3720/CLASS5/5 Spectroscopy.html

IRRADIATION ON EARTH'S SURFACE

 Irradiation that arrives to a horizontal plane on earth's surface can be:- Direct: solar radiation traveling on a straight line from the sun down to the surface of the earth.
- Diffused: sunlight that has been scattered by molecules and particles in the atmosphere.
- Reflected: Reflected on the ground and nearby objects.

$$
\text { Global: } \mathrm{H}=\mathrm{H}_{\mathrm{dir}}+\mathrm{H}_{\mathrm{dif}}+\mathrm{H}_{\mathrm{ref}}
$$

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

IRRADIATION ON EARTH'S SURFACE Mesurements of Direct Radiation:

Pyrheliometers

Source:https://upload.wikimedia.org/wikipedia/commons/4/4b/Hukseflux_solarradiation_dr01_photo.jpg

IRRADIATION ON EARTH'S SURFACE Mesurements of Global and Diffused Radiation:

Pyranometers

IRRADIATION ON EARTH'S SURFACE Mesurements of Global and Diffuse Radiation:

Global radiation evolution during time.

Large dispersion, statistical methods should be used.

Source: https://commons.wikimedia.org/wiki/File:Solar-cycle-data.png

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE
Clearness Index:
Ratio of the monthly average daily irradiation reaching a horizontal plane at the location on the Earth's surface and the extraterrestrial irradiation.

Thus K_{T} is an indication of how much of the Sun's radiation is lost to scattering and absorption in the atmosphere.

$$
\mathrm{K}_{\mathrm{T}}=\frac{\overline{\mathrm{H}_{\mathrm{d}}}}{\mathrm{H}_{0}}
$$

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

Models of diffused radiation:
The ratio of diffused radiation and global radiation have to depend on the clearness of atmosphere.

$$
\frac{\overline{\mathrm{H}_{\mathrm{dif}}}}{\mathrm{H}}=\mathrm{f}\left(\mathrm{~K}_{\mathrm{T}}\right)
$$

Source:M. Collares-Pereira, A. Raabl Solar Energy 22, 155-164 (1979)

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

Models of diffused radiation:

The ratio of diffused radiation and global radiation have to depend on the clearness of atmosphere.

Source:M. Collares-Pereira, A. Raabl Solar Energy 22, 155-164 (1979)

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

 Models of diffused radiation:The ratio of diffused radiation and global radiation have to depend on the clearness of atmosphere.
$\frac{\bar{H}_{\text {dif }}}{\mathrm{H}}=1.39-4.03 \mathrm{~K}_{\mathrm{T}}+5.53 \mathrm{~K}_{\mathrm{T}}{ }^{2}-3.11 \mathrm{~K}_{\mathrm{T}}{ }^{3}$
Liu \& Jordan (1960)

Source:M. Collares-Pereira, A. Raabl Solar Energy 22, 155-164 (1979)

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

The ratio of diffused radiation and global radiation have to depend on the clearness of atmosphere.

Collares-Pereira \& Rabl (1979)
$\bar{H}_{\text {dif }}$
$\begin{aligned} \mathrm{H}= & 0.775+0.0065\left(\omega_{\mathrm{p}}-90\right)- \\ & -\left[0.505+0.0261\left(\omega_{p}-90\right)\right] \cos \left(115 \mathrm{~K}_{\mathrm{T}}-103\right)\end{aligned}$

VIPSKILLS

IRRADIATION ON EARTH'S SURFACE

 Terrestrial Albedo:Albedo or reflectivity of the surrounding ground is the ratio of reflected radiation to global radiation

Ground cover	Albedo	Ground cover	Albedo
Dry bare ground	0.2	Pale soil	0.3
Dry grassland	0.3	Dark soil	0.1
Desert sand	0.4	Water	0.1
Snow	$0.5-0.8$	Vegetation	0.2

IRRADIATION ON A TILTED SURFACE

Diffused radiation on a Tilted Surface:

$$
\overline{\mathrm{H}}_{\mathrm{dif}}(\beta)=0.5 \overline{\mathrm{H}}_{\mathrm{dif}}(1+\cos \beta)
$$

Model of Liu \& Jordan for isotropic radiation

VIPSKILLS

IRRADIATION ON A TILTED SURFACE Reflected radiation on a Tilted Surface:

$$
\bar{H}_{\text {ref }}(\beta)=0.5 \rho \bar{H}(1-\cos \beta)
$$

Model of Liu \& Jordan for isotropic radiation

VIPSKILLS

IRRADIATION ON A TILTED SURFACE

Direct radiation on a Tilted Surface:

- β : Inclination angle
- α : Orientatation angle
- i: Angle of Incidence

VIPSKILLS

IRRADIATION ON A TILTED SURFACE Direct radiation on a Tilted Surface:

$$
H_{\text {dir }}(\beta)=R_{\text {cor }} H_{\text {dir }}
$$

Horizontal $H^{\sim}\left(\mathrm{H}_{\text {dir }}+\mathrm{H}_{\text {dif }}\right)$ surface

$$
R_{\text {cor }}=\frac{\cos i}{\cos z} \quad \begin{aligned}
& \text { Complex g } \epsilon \\
& \text { expression }
\end{aligned}
$$

IRRADIATION ON A TILTED SURFACE

Direct radiation on a Tilted Surface:

$$
\overline{\mathrm{H}}_{\mathrm{dir}}(\beta)=\mathrm{R}_{\mathrm{cor}}\left(\mathrm{H}-\overline{\mathrm{H}}_{\mathrm{dif}}\right)
$$

For $\alpha=0$ (South orientation):

$$
R_{\text {cor }}=\frac{\cos (L-\beta) \cos \delta \sin \omega_{p}+\omega_{p} \operatorname{sen}(L-\beta) \sin \delta}{\cos L \cos \delta \sin \omega_{p}+\omega_{\mathrm{p}} \operatorname{sen} L \sin \delta}
$$

IRRADIATION ON A TILTED SURFACE
Global radiation on a Tilted Surface:

$$
H(\beta)=H_{\text {dir }}(\beta)+H_{\text {dif }}(\beta)+H_{\text {ref }}(\beta)
$$

VIPSKILLS

IRRADIATION ON A TILTED SURFACE
Factor correction for orientation:

$$
H(\alpha)=K_{\text {or }} H(\alpha=0)
$$

Approximate expression:

$$
\mathrm{K}_{\text {or }} \sim\left(1-3.510^{-5} \alpha^{2}\right)
$$

IRRADIATION LOSSES

Loss by Orientation-Inclination:

Solar radiation loss chart

IRRADIATION LOSSES
Loss by Orientation-Inclination:
Approximate expression:
Power loss $(\%)=100\left[1.210^{-4}\left(\beta-\beta_{\text {opt }}\right)^{2}+3.5 \quad 10^{-5} \alpha^{2}\right]$
Optimum angles:

- Optimum orientation angle: $\alpha=0$, South
-Optimum inclination angle : $\beta=\mathrm{L}-\delta$, depends on day

IRRADIATION LOSSES
 Loss by Orientation-Inclination:

Design angles:

- Orientation angle: $\alpha=0$, South
- Inclination angle :

$$
\begin{aligned}
& \beta=L \text { (General case) } \\
& \beta=L+10 \text { (Design for winter) } \\
& \beta=L-10 \text { (Design for summer) }
\end{aligned}
$$

VIPSKILLS

IRRADIATION LOSSES
 Loss by Orientation-Inclination:

Spanish CTE Regulation:

Maximum allowed losses:

	Orientation- Inclination	Shadow	Total
General	10%	10%	15%
Collector overlap	20%	15%	30%
Architectural integration	40%	20%	50%

VIPSKILLS

IRRADIATION LOSSES
Loss by Orientation-Inclination:
Spanish CTE Regulation:
Method of Calculation using Solar radiation loss chart:

1. In the loss chart corresponding to $\mathrm{L}=41 \mathrm{1}$, the orientation azimuth line is drawn.
2. The intersection points with curve correspondint to allowed loss ($10 \%, 20 \%$ or 40%) are obtained.
3. These limit inclinations are corrected to right latitude.

VIPSKILLS

IRRADIATION LOSSES

Loss by Orientation-Inclination: Spanish CTE Regulation:

$\beta_{\text {inf }}$: Minimum inclination
$\beta_{\text {sup }}$: Maximum inclination
Latitude correction:
$\beta(\mathrm{L})=\beta\left(41^{\mathrm{O}}\right)-\left(41^{\text {O}} \mathrm{L}\right)$

VIPSKILLS

IRRADIATION LOSSES Loss by shadow:

Shadow between adjacent collectors (minimum separation):

Relation between the height of upper point of collector, H , and lenght of shadow, d1:

$$
\operatorname{tg} \mathrm{h}=\frac{\mathrm{H}}{\mathrm{~d}_{1}}
$$

$\mathrm{d}_{1}=\mathrm{H} / \mathrm{tgh}$

VIPSKILLS

IRRADIATION LOSSES Loss by shadow:

Shadow between adjacent collectors (minimum separation):

$$
H=L_{c} \operatorname{sen} \beta
$$

Minimum separation between collectors:

$$
d_{\min }=d_{1}+d_{2}=L_{c}[\operatorname{sen} \beta / \operatorname{tgh}+\cos \beta]
$$

In design, it is calculated for the worst condition: day 21/12 at 12:00h

IRRADIATION LOSSES

Loss by shadow:
Shadow of adjacent obstacles (method of calculation):

1. Determination of obstacle profile: Values of elevation and azimuth of the object.
2. Transfer of the profile to the chart of the Sun trajectories divided into zones.
3. Determination of the shaded areas and search in the corresponding table closest to the collector conditions.

IRRADIATION LOSSES
Loss by shadow:
Shadow of adjacent obstacles (method of calculation):
4. Quantification of losses by adding the contribution of each zone weighted by a factor of $0.25,0.5,0.75$ and 1 according to the degree of shadow.

VIPSKILLS

IRRADIATION LOSSES
 Loss by shadow:

Shadow of adjacent obstacles (method of calculation):

h_{1}, a_{1}
h_{2}, a_{2}
h_{3}, a_{3}

VIPSKILLS

IRRADIATION LOSSES Loss by shadow:

Shadow of adjacent obstacles (method of calculation):

VIPSKILLS

	Tabla 5-A				Tabla 5-B				
	A	B	C	D	$\begin{aligned} & \beta=0^{\circ} \\ & \alpha=0^{\circ} \end{aligned}$	A	B	C	D
13	0,00	0,00	0,00	0,03		0,00	0,00	0,00	0,18
$\text { / } 11$	0,00	0,01	0,12	0,44	11	0,00	0,01	0,18	1,05
9	0,13	0,41	0,62	1,49	9	0,05	0,32	0,70	2,23
7	1,00	0,95	1,27	2,76		0,52	0,77	1,32	3,56
5	1,84	1,50	1,83	3,87	5	1,11	1,26	1,85	4,66
3	2,70	1,88	2,21	4,67	3	1,75	1,60	2,20	5,44
1	3,15	2,12	2,43	5,04	1	2,10	1,81	2,40	5,78
2	3,17	2,12	2,33	4,99	2	2,11	1,80	2,30	5,73
4	2.70	1.89	2,01	4,46	4	1,75	1,61	2,00	5,19
6	. 79	1, 1	1,65	3,63	6	1,09	1,26	1,65	4,37
8	d,98	0,99	1,08	2,55	8	0,51	0,82	1,11	3,28
10	\$, 11	0.42	0.52	1,33	$1{ }^{10}$	0,05	0,33	0,57	1,98
12	¢,00	0,02	0,10	0,40	12	0,00	0,02	0,15	0,96
14	0,00	0,0	0,00	0,02	14	0,00	0,00	0,00	0,17
Tabla 5-C					Tabla 5-D				
$\beta=9 \delta$	B C D				$\begin{aligned} & \beta=35^{\circ} \\ & \alpha=30^{\circ} \end{aligned}$	A	B	C	D
13	$0,00 \sim 0,00 \quad 0,00$				13	0,00	0,00	0,00	0,10
11	0,00 0,01				11	0,00	0,00	0,03	0,06
9	0,23	0,50	0,37	0,10	9	0,02	0,10	0,19	0,56
7	1,66	1,06	0,93	0,78	7	0,54	0,55	0,78	1,80
5	2,76	1,62	1,43	1,68	5	1,32	1,12	1,40	3,06
3	3,83	2,00	1,77	2,36	3	2,24	1,60	1,92	4,14
1	4,36	2,23	1,98	2,69	1	2,89	1,98	2,31	4,87
2	4,40	2,23	1,91	2,66	2	3,16	2,15	2,40	5,20
4	3,82	2,01	1,62	2,26	4	2,93	2,08	2,23	5,02
6	2,68	1,62	1,30	1,58	6	2,14	1,82	2,00	4,46
8	1,62	1,09	0,79	0,74	8	1,33	1,36	1,48	3,54
10	0,19	0,49	0,32	0,10	10	0,18	0,71	0,88	2,26

Shadow of adjacent obstacles (method of calculation):

A_{1}	$\mathrm{~B}_{2}$
$\mathrm{~A}_{2}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{4}$	$\mathrm{~B}_{6}$
$\mathrm{~A}_{6}$	

Source: Pliego de las Condiciones Técnicas del IDAE

VIPSKILLS

IRRADIATION LOSSES Loss by shadow:

Shadow of adjacent obstacles (method of calculation):

$$
\begin{array}{ll}
\mathrm{A}_{1}: 0.75 & \mathrm{~B}_{2}: 0.5 \\
\mathrm{~A}_{2}: 1 & \mathrm{~B}_{4}: 0.75 \\
\mathrm{~A}_{4}: 1 & \mathrm{~B}_{6}: 0.25 \\
\mathrm{~A}_{6}: 0.75 & \mathrm{P}_{\mathrm{T}}=\sum \mathrm{C}_{\mathrm{i}} P
\end{array}
$$

- slide 23 Presentation prepared by

Antonio Rodero Serrano, University of Cordoba

The presentation is available on license
Creative Commons Attribution-ShareAlike 4.0 International
Virtual and Intensive Course Developing

VIPSKILLS

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Publikacja została zrealizowana przy wsparciu finansowym Komisji Europejskiej.
Publikacja odzwierciedla jedynie stanowisko jej autorów i Komisja Europejska oraz Narodowa Agencja Programu Erasmus+ nie ponoszą odpowiedzialności za jej zawartość merytoryczną.

El presente proyecto ha sido financiado con el apoyo de la Comisión Europea. Esta publicación (comunicación) es responsabilidad exclusiva de su autor. La Comisión no es responsable del uso que pueda hacerse de la información aquí difundida.

Šis projektas finansuojamas remiant Europos Komisijai.
Šis leidinys [pranešimas] atspindi tik autoriaus požiūrì, todèl Komisija negali būti laikoma atsakinga už bet koki jame pateikiamos informacijos naudojimą.

